Proving Noninterference by a Fully Complete Translation to the Simply Typed Λ-calculus
نویسندگان
چکیده
Tse and Zdancewic have formalized the notion of noninterference for Abadi et al.’s DCC in terms of logical relations and given a proof of noninterference by reduction to parametricity of System F. Unfortunately, their proof contains errors in a key lemma that their translation from DCC to System F preserves the logical relations defined for both calculi. In fact, we have found a counterexample for it. In this article, instead of DCC, we prove noninterference for sealing calculus, a new variant of DCC, by reduction to the basic lemma of a logical relation for the simply typed λ-calculus, using a fully complete translation to the simply typed λ-calculus. Full completeness plays an important role in showing preservation of the two logical relations through the translation. Also, we investigate relationship among sealing calculus, DCC, and an extension of DCC by Tse and Zdancewic and show that the first and the last of the three are equivalent.
منابع مشابه
Proving Noninterference by a Fully Complete Translation to the Simply Typed lambda-Calculus
Tse and Zdancewic have formalized the notion of noninterference for Abadi et al.’s DCC in terms of logical relations and given a proof of noninterference by reduction to parametricity of System F. Unfortunately, their proof contains errors in a key lemma that their translation from DCC to System F preserves the logical relations defined for both calculi. In fact, we have found a counterexample ...
متن کاملCertified Higher-Order Recursive Path Ordering
Recursive path ordering (RPO) is a well-known reduction ordering introduced by Dershowitz [6], that is useful for proving termination of term rewriting systems (TRSs). Jouannaud and Rubio generalized this ordering to the higher-order case thus creating the higher-order recursive path ordering (HORPO) [8]. They proved that this ordering can be used for proving termination of higher-order TRSs wh...
متن کاملFunctions as Session-Typed Processes
We study type-directed encodings of the simply-typed λ-calculus in a session-typed π-calculus. The translations proceed in two steps: standard embeddings of simply-typed λ-calculus in a linear λ-calculus, followed by a standard translation of linear natural deduction to linear sequent calculus. We have shown in prior work how to give a Curry-Howard interpretation of the proofs in the linear seq...
متن کاملLinear realizability and full completeness for typed lambda-calculi
We present the model construction technique called Linear Realizability. It consists in building a category of Partial Equivalence Relations over a Linear Combinatory Algebra. We illustrate how it can be used to provide models, which are fully complete for various typed λ-calculi. In particular, we focus on special Linear Combinatory Algebras of partial involutions, and we present PER models ov...
متن کاملUnfixing the Fixpoint: The Theories of the λY-Calculus
We investigate the theories of the λY -calculus, i.e. simply typed λ-calculus with fixpoint combinators. Non-terminating λY -terms exhibit a rich behavior, and one can reflect in λY many results of untyped λ-calculus concerning theories. All theories can be characterized as contextual theories à la Morris, w.r.t. a suitable set of observables. We focus on theories arising from natural classes o...
متن کامل